Forecasting Sunspot Numbers with Neural Networks

نویسنده

  • Jari Kyngäs
چکیده

This paper presents a feedforward neural network approach to sunspot forecasting. The sunspot series were analyzed with feedforward neural networks, formalized based on statistical models. The statistical models were used as comparison models along with recurrent neural networks. The feedforward networks had 24 inputs (depending on the number of predictor variables), one hidden layer with 20 or 30 neurons and one neuron on the output layer. The networks were trained using the backpropagation algorithm. As a result, I found that feedforward neural networks are much better forecasters than recurrent neural networks and statistical models. KeywordsNeural networks, Time series analysis, Forecasting, Prediction, Statistical models, Sunspots, Autoregressive models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Technique for Solar Activity Forecasting using Recurrent Elman Networks

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification” of the time series under stu...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Neural network prediction of solar activity

The neural network technique is used to analyze the time series of solar activity, as measured through the relative Wolf number. Firstly, the embedding dimension of the time-series characteristic attractor is obtained. Secondly, after describing the design and training of the net, the performance of the present approach in forecasting yearly mean sunspot numbers is favorably compared to that of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995